A pr 2 00 8 CENTRAL LIMIT THEOREMS FOR NON - INVERTIBLE MEASURE PRESERVING MAPS

نویسندگان

  • MICHAEL C. MACKEY
  • MARTA TYRAN - KAMIŃSKA
چکیده

Using the Perron-Frobenius operator we establish a new functional central limit theorem result for non-invertible measure preserving maps that are not necessarily ergodic. We apply the result to asymptotically periodic transformations and give an extensive specific example using the tent map.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Central Limit Theorems for Non-invertible Measure Preserving Maps

This paper is motivated by the question “How can we produce the characteristics of a Wiener process (Brownian motion) from a semi-dynamical system?”. This question is intimately connected with Central Limit Theorems for non-invertible maps and various invariance principles. Many results on CLT and invariance principles for maps have been proved, see e.g. the surveys Denker [4] and Mackey and Ty...

متن کامل

A pr 2 00 7 ERGODIC THEORY : RECURRENCE

Almost every, essentially: Given a Lebesgue measure space (X,B, μ), a property P (x) predicated of elements of X is said to hold for almost every x ∈ X, if the set X \ {x : P (x) holds} has zero measure. Two sets A,B ∈ B are essentially disjoint if μ(A ∩B) = 0. Conservative system: Is an infinite measure preserving system such that for no set A ∈ B with positive measure are A,T−1A,T−2A, . . . p...

متن کامل

New operators through measure of non-compactness

In this article, we use two concepts, measure of non-compactness and Meir-Keeler condensing operators. The measure of non-compactness has been applied for existence of solution nonlinear integral equations, ordinary differential equations and system of differential equations in the case of finite and infinite dimensions by some authors. Also Meir-Keeler condensing operators are shown in some pa...

متن کامل

ar X iv : m at h / 03 11 20 9 v 1 [ m at h . D S ] 1 3 N ov 2 00 3 DISSIPATION TIME AND DECAY OF CORRELATIONS

We consider the effect of noise on the dynamics generated by volume-preserving maps on a d-dimensional torus. The quantity we use to measure the irreversibility of the dynamics is the dissipation time. We focus on the asymptotic behaviour of this time in the limit of small noise. We derive universal lower and upper bounds for the dissipation time in terms of various properties of the map and it...

متن کامل

N ov 2 00 3 DISSIPATION TIME AND DECAY OF CORRELATIONS

We consider the effect of noise on the dynamics generated by volume-preserving maps on a d-dimensional torus. The quantity we use to measure the irreversibility of the dynamics is the dissipation time. We focus on the asymptotic behaviour of this time in the limit of small noise. We derive universal lower and upper bounds for the dissipation time in terms of various properties of the map and it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008